Patentes e mercado da computação de borda 5G

15/11/2021 08:57

Na Tabela 1 é apresentado as principais empresas no depósito de patentes, declaração de patentes essenciais a padrões (SEP – Standard-Essential Patent) e desenvolvimento de padrões relacionados com computação de borda 5G. Essas empresas são do ramo de computação em nuvem ou de setores de dados e software.

Cessionário atual/

Desenvolvedor de padrões

Pedidos de

patente

Declaração

SEP

Contribuições

de padrões

1

Huawei (CN)

821

138

862

2

Intel (US)

686

42

488

3

Nokia (FN)

576

87

439

4

SAS Institute (US)

426

0

0

5

Apple (US)

386

72

41

6

Samsung Electronics (KR)

287

16

536

7

Verizon (US)

196

0

50

8

Microsoft (US)

188

0

0

9

Cisco (US)

168

0

39

10

Ericsson (SE)

163

6

374

11

LG Electronics (KR)

160

33

144

12

NEC (JP)

158

3

55

13

Pure Storage (US)

155

0

0

14

IBM (US)

125

0

0

15

Siemens (DE)

120

0

30

16

Sony (JP)

119

0

66

17

AT&T (US)

99

0

130

18

TE (CN)

96

4

193

19

Qualcomm (US)

68

6

256

20

Tencent (CN)

64

0

117

21

Convida Wireless (US)

60

0

88

22

CATT Datang Mobile (CN)

55

2

0

23

China Mobile (CN)

54

0

206

24

Deutsche Telekom (DE)

47

0

64

25

InterDigital (US)

46

2

77

26

SoftBank (JP)

46

0

4

27

Orange (FR)

41

0

60

28

Hewlett Packard Enterprise (US)

39

0

19

29

ETRI (KR)

37

1

29

30

Fraunhofer (DE)

35

11

17

31

Robert Bosch (DE)

34

0

10

32

Sharp (JP)

30

2

0

Tabela 1 – Relação empresas/desenvolvedores e número de patentes que descrevem tecnologias de computação de borda [1].

Fabricantes de chips, celulares e redes como Huawei (China), Intel (EUA), Nokia (Finlândia), Apple (EUA), Samsung Electronics (Coréia) e Ericsson (Suécia) contribuem fortemente para o desenvolvimento de padrões e, ao mesmo tempo, possuem grandes carteiras de patentes, algumas das quais são declaradas essenciais como padrão, isto é, uma patente que se torna um padrão que outros desenvolvedores ou empresas devem seguir. Além disso, muitas das operadoras de telecomunicações podem ser encontradas na lista dos principais proprietários de patentes e desenvolvedores de padrões, como Verizon (EUA), AT&T (EUA), China Mobile (China), Deutsche Telekom (Alemanha) e Orange (França).

Os líderes de tecnologia listados na Tabela 1 são de extrema importância para o sucesso da computação de borda, pois têm desenvolvido dispositivos, chips, redes, aplicativos, serviços, sensores e padrões de conectividade para realizar os primeiros casos de uso da computação de borda. Prevê-se que o mercado global da computação de borda em nuvem crescerá para US$12 bilhões ainda em 2021 [1]. Supõe-se que, até 2023, cerca de 70% das empresas estarão realizando parte de seus processamentos de dados usando a computação de borda 5G [1]. Assim, o interesse por uma parcela desse mercado é propagado entre várias empresas do ramo de desenvolvimento de tecnologia.

Uma dessas empressas interessada na computação de borda 5G é a WEG que tem criado parcerias com empresas da Tabela 1, como: Nokia e Qualcomm, além da já existente cooperação com a Agência Brasileira de Desenvolvimento Industrial (ABDI), a Agência Nacional de Telecomunicações (Anatel) e a Claro. O Open Lab 5G – V2COM da WEG em uma das fábricas, localizada na cidade de Jaraguá do Sul no estado de Santa Catarina (BR) completou testes práticos de conectividade à rede 5G. Foram realizados testes para avaliação de desempenho e a convivência de dispositivos e antenas com a tecnologia 5G em ambiente real para reunir informações sobre faixas de frequência, latência, potência e outras características necessárias às aplicações industriais [2].

De acordo com o relatório de resultados preliminares do Open Lab 5G – V2COM [3], foram obtidos dados experimentais utilizando a ferramenta iPerf [4], com transmissão de dados tanto TCP como em UDP ativando tráfego em cinco premissas de equipamentos de usuário (CPEs – Customer-premises equipment) parados e a uma distância de aproximadamente cinco metros de uma Small Cell: rede privada independente da Nokia na banda n78 (3,5 GHz), faixa de 3,7 GHz a 3,8 GHz, operando com largura de canal de 100 MHz, no modo SA (Stand Alone) e TDD (Time-Division Duplex) com distribuição 3:7 e saída de potência (Effective Isotropic Radiated Power – E.I.R.P.) de 23 dBm.

Um dos testes do relatório de resultados preliminares do Open Lab 5G – V2COM [3] é o de Throughput, latência e perda de pacotes versus a distância entre a Small Cell e um dos CPEs. Tais testes foram realizados posicionando fisicamente os CPEs a diferentes distâncias da Small Cell 4 da rede privativa independente – SA representada na Figura3, ou seja, apenas uma Small Cell ligada e as outras três desligadas.

Figura 1 – Topologia do teste da rede privativa independente – SA [3].

Foramrealizados testes utilizando-se a ferramenta iPerf com transmissão de dados em TCP para esta topologia em específico. As verificações foram feitas com o CPE parado às distâncias de 5, 20, 40 e 60 metros da Small Cell. Os valores de Throughput máximo, médio e mínimo obtidos durante o tempo de um minuto de medição são apresentados na Figura 2 e Figura 3. Também são apresentados nas mesmas figuras, os valores de latência médios obtidos durante quinze segundos antes do início do envio dos pacotes de dados, durante o um minuto em que são enviados os pacotes de dados e durante quinze segundos depois do envio dos pacotes de dados. Todas essas medições são apresentadas para cada uma das quatro distâncias em um mesmo gráfico para melhor visualização e comparação. São apresentados também, para as diferentes distâncias, os percentuais de redução de Throughput obtidos com relação ao Throughput a 5 metros.

Figura 2 – Uplink – Latência vs Throughput máximo (TCP) [3].

Figura 3 – Downlink – Latência vs Throughput máximo (TCP) [3].

Atenção: O texto acima foi extraído do TCC de Dener Kraus, intitulado Computação de borda para indústria utilizando a rede 5G, disponível em: https://repositorio.ufsc.br/handle/123456789/228613.

Referências:

[1] Pohlmann, T. Who is leading the 5G patent race for edge computing? Acesso em: 26/08/2021. Disponível em:<https://www.managingip.com/article/ b1rznbcc4dsk23/who-is-leading-the-5g-patent-race-for-edge-computing>.

[2] WEG. WEG completa testes práticos de conectividade à rede 5G. Acesso em: 26/08/2021. Disponível em:<https://www.weg.net/institutional/BR/pt/news/ produtos-e-solucoes/weg-completa-testes-praticos-de-conectividade-a-rede-5g>.

[3] WEG-V2COM OPEN LAB. RESULTADOS PRELIMINARES WEG-V2COM OPEN LAB 5G. Acesso em: 04/09/2021. Disponível em:<https://sei.anatel.gov.br/sei/modulos/pesquisa/md_pesq_documento_consulta_externa. php?eEP-wqk1skrd8hSlk5Z3rN4EVg9uLJqrLYJw_9INcO6fX6o9bVPoiTHX_ HKDp8z4jNp1Hsw31wuTQX8J-fqjddyWo1pe5dZRrEvwZXjQvETUCBSxxyrrpuXwu\ EBod27a>.

[4] iPerf. iPerf – The ultimate speed test tool for TCP, UDP and SCTP. Acesso em: 07/09/2021. Disponível em:<https://iperf.fr/>.

Tags: 5GABDIANATELAppleAT&TbordaChina MobilecoreDeutsche TelekomedgeEricssonHuaweilatenciaNokiaOrangeSamsungthroughputV2COMvelocidadeVerizonWEG