O que é SD-WAN?

15/07/2023 16:49

Rede de Longa Distância Definida por Software (SD-WAN), é uma tecnologia de rede que simplifica a administração e operação de uma rede de longa distância (WAN) [1].

Uma WAN é uma rede que conecta dispositivos ou outras redes que estão distantes entre si, geralmente em diferentes locais. Geralmente as WANs são utilizadas por empresas para conectar suas sedes a filiais, data centers e serviços na nuvem [1].

A parte de “SD” é a sigla para “Software Defined“, ou “Definido por Software”, em tradução direta. Tradicionalmente, a administração de uma rede era fortemente dependente do hardware e exigia a configuração manual de roteadores e outros dispositivos. Com a SD-WAN, a administração da rede é abstraída do hardware e gerida por um software. Isso permite que a rede seja configurada de maneira otimizada e seu monitoramento seja feito de maneira centralizada e automática [1,2].

Com esse roteamento inteligente, é possível escolher o melhor caminho para o tráfego de dados com base nas condições da rede em tempo real, e a capacidade de utilizar simultaneamente várias conexões de rede, como banda larga, conexões via satélite e 5G [1].

A interseção da SD-WAN e do 5G abre um leque de possibilidades para gerenciar e otimizar redes. À medida que mais dispositivos se tornam capazes de se conectar via 5G, o tráfego de rede está propenso a aumentar substancialmente. Nesse contexto, a SD-WAN pode ser usada para gerenciar eficientemente esse aumento de tráfego de rede, garantindo que as redes não fiquem congestionadas e o desempenho não seja comprometido [1].

A flexibilidade e a gestão centralizada da SD-WAN podem facilitar o gerenciamento de redes 5G. Além disso, a capacidade da SD-WAN de utilizar várias conexões simultaneamente podem permitir que os administradores de rede combinem conexões 5G 3GPP e NON3GPP para maximizar o desempenho e a confiabilidade da rede [1].

Atenção: O texto acima foi extraído do TCC de Lucas Kienen Rota, intitulado Avaliação e validação da interoperabilidade das Redes Non3GPP com as redes 5G fim a fim (UE a UE), disponível em: https://repositorio.ufsc.br/handle/123456789/248729.

Referências:

[1] ROTA, Lucas Kienen. Avaliação e validação da interoperabilidade das Redes Non3GPP com as redes 5G fim a fim (UE a UE).  2023. 88 f. TCC (Graduação) – Curso de Engenharia de Controle e Automação, Departamento de Engenharia de Controle, Automação e Computação, Universidade Federal de Santa Catarina. Campus Blumenau, Blumenau, 2023. Disponível em: https://repositorio.ufsc.br/handle/123456789/248729. Acesso em: 13 jul. 2023.

[2] SEGEČ, P.; MORAVČIK, M.; URAMOVÁ, J.; PAPÁN, J.; YEREMENKO, O. SD-WAN – architecture, functions and benefits. IEEE Xplore, 2021.

Tags: China MobilecoreedgeIndustria 4.0IoTQoSSDNslicing

Ferramentas úteis para redes móveis

15/07/2023 16:43

UERANSIM

O UERANSIM é uma solução de software de código aberto, desenvolvida em C++, destinada à simulação de redes 5G. Esta ferramenta, que se destaca por oferecer uma implementação completa do UE e da gNB, permite a simulação de processos essenciais da rede 5G, tais como procedimentos de registro, estabelecimento de serviço, configuração de segurança, entre outros [1].

Essa plataforma de simulação fornece um ambiente controlado e reproduzível para experimentação e desenvolvimento da tecnologia 5G, sem a necessidade de acesso à infraestrutura real da rede 5G. Adicionalmente, seu caráter de código aberto permite que os usuários possam alterar e aprimorar o software conforme suas necessidades específicas, contribuindo para a evolução constante da ferramenta. Por isso, o UERANSIM se apresenta como um recurso valioso para pesquisadores, desenvolvedores e engenheiros que atuam com a tecnologia 5G [1,2].

Aether-in-a-box

O Aether-in-a-Box é um projeto de pesquisa e desenvolvimento no contexto do 5G que visa criar uma plataforma de testes e experimentação para a tecnologia 5G e suas aplicações. Esse projeto é financiado e apoiado por várias empresas líderes da indústria de telecomunicações, incluindo fornecedores de equipamentos, operadoras de rede e instituições acadêmicas [3].

O objetivo do Aether-in-a-Box é fornecer uma solução completa e de ponta a ponta para testes e validação de tecnologias 5G, incluindo equipamentos de rede, dispositivos móveis e aplicações. Ele busca criar um ambiente controlado e flexível, onde pesquisadores e desenvolvedores possam explorar os recursos do 5G, avaliar o desempenho de novos serviços e experimentar novas ideias em redes privadas [3].

A pesquisa realizada no âmbito do projeto Aether-in-a-Box abrange diversas áreas relacionadas ao 5G, como redes de acesso sem fio, virtualização de redes, computação em nuvem, internet das coisas (IoT), segurança e muito mais. Os pesquisadores envolvidos têm a oportunidade de explorar os desafios e as oportunidades apresentadas pelo 5G, contribuindo para o avanço dessa tecnologia e suas aplicações [3].

O Aether-in-a-Box surgiu como uma resposta à crescente demanda por plataformas de testes 5G mais acessíveis e flexíveis e também a rede privada é um conceito de grande impacto. A ideia por trás do projeto é permitir que empresas e instituições de pesquisa tenham acesso a um ambiente de teste realista e controlado, sem a necessidade de grandes investimentos em infraestrutura [3].

Ao disponibilizar uma plataforma aberta e modular, o Aether-in-a-Box incentiva a colaboração e o compartilhamento de conhecimento entre diferentes atores da indústria de telecomunicações. Isso contribui para impulsionar a inovação e acelerar o desenvolvimento de novas aplicações e serviços baseados no 5G [3].

No decorrer do projeto, várias empresas estão envolvidas no financiamento e suporte, incluindo fornecedores de equipamentos de rede, fabricantes de dispositivos móveis, operadoras de telecomunicações e instituições de pesquisa. Essa colaboração entre diferentes stakeholders é fundamental para impulsionar o desenvolvimento do 5G e garantir sua adoção bem-sucedida [3].

No geral, o projeto Aether-in-a-Box representa um esforço conjunto para impulsionar a pesquisa pela ONF, desenvolvimento e adoção do 5G, fornecendo uma plataforma de testes aberta e flexível. Com o envolvimento de várias empresas e instituições, ele está contribuindo para a evolução contínua do 5G e a criação de um ecossistema inovador para as futuras redes de telecomunicações [3,4].

Free5GC / Free5GC Compose

O Free5GC Compose é uma versão em Docker Compose do Free5GC, que por sua vez é um projeto em código aberto para simulação de processos e aplicações do core 5G mantido pela Universidade Nacional Chiao Tung (NCTU – National Chiao Tung University), localizada em Hsinchu, Taiwan. O objetivo final do projeto Free5GC é implementar o core da rede 5G definido na Release 15 (R15) e posteriores. A licença do Free5GC é a Apache 2.0, isto é, qualquer um pode usar o Free5GC para fins comerciais sem pagar taxas [5,6].

No estágio 3, o Free5GC apresenta um core 5G completamente funcional e suporta funcionalidades de operação, administração, e gerenciamento (OAM – Operation, Administration and Management) além de orquestração. Foram adicionadas as funções N3IWF e a funcionalidade de classificador de Uplink (ULCL – UpLink Classifier) [6], além das já suportadas funções: NSSF, NRF, UDM, PCF, AUSF, AMF, SMF, e UPF [5].

Além dos containers contendo cada uma das NFs isoladas, o Free5GC Compose possui um container com a implementação de uma interface Web (WebUI). A WebUI permite cadastrar os dispositvos de usuário no Core com uma série de configuraçãoes como: Identidade Internacional de Assinante Móvel (IMSI – International Mobile Subscriber Identity), S-NSSAI, DNN e configurações de QoS. Podendo através da WEBUI também, visualizar informações da conexão como consumo de dados em tempo real, endereço IP do assinante e entre outras funções. A plataforma Free5GC Compose utiliza o protocolo HTTP2 para implementar a arquitetura de representação do estado de Transferência (REST – Representational State Transfer) [5,6].

OpenAirInterface

O OAI (OpenAirInterface) é uma plataforma de software de código aberto criada com intuito de oferecer ferramentas para o desenvolvimento de redes de telecomunicações móveis definidas por software com base nos padrões 3GPP. O projeto é mantido pelo Eurecom, um instituto francês de pesquisa em telecomunicações [7,8]. O OpenAirInterface implementa o NG-RAN e o 5GC em hardware genérico, subdivididos em dois projetos [7,9].

O OpenAirInterface segue o conceito Open-RAN, que tem a premissa de implementar o rádio do 5G através de iniciativas de código aberto, removendo assim a necessidade de estar preso a tecnologias proprietárias e garantindo interoperabilidade e flexibilidade para escolher diferentes fornecedores durante a implantação de rede [7].

Usando o simulador OAI, pesquisadores e desenvolvedores podem avaliar o desempenho de protocolos e algoritmos de rede sem fio em várias condições e cenários. Isso permite que eles identifiquem possíveis problemas e otimizem o desempenho de seus sistemas sem fio antes de implantá-los em ambientes do mundo real [7].

5G-LENA

O simulador 5G-LENA, com código aberto, é um simulador de ponta a ponta, a nível de sistema, que é oferecido como um módulo do software ns-3 e é mantido pela instituição CCTC (Centre Tecnològic de Telecomunicacions de Catalunya), localizada na Espanha, possuindo licença GPLv2 [10].

Seu desenvolvimento se deu a partir de um fork do simulador ns–3 mmWave [10,11], que, por sua vez, foi baseado no simulador LENA (para 4G) que havia sido desenvolvido pelo CCTC [10,12].

Já que o simulador funciona sobre o ns-3, é possível utilizar outros módulos de simulação como Ethernet, Wi-Fi, LTE, entre outros, juntamente ao 5G-LENA, sendo possível conduzir simulações com interoperabilidade de tecnologias, o que aumenta a versatilidade dos testes e a relevância dos resultados [10].

As camadas PHY e MAC foram implementadas seguindo-se os padrões do rádio 5G, no entanto, as camadas e protocolos RLC, PDCP, RRC, NAS e o Core são ainda os mesmos do simulador LENA (4G) [10,12]. A camada SDAP, por não existir no 4G, também não está presente no 5G-LENA [10,12].

Dentre as funcionalidades do rádio 5G (NR) relevantes do simulador estão:

  • configuração flexível e automática da estrutura do quadro NR através de múltiplas numerologias [10,12];
  • acesso baseado em Orthogonal Frequency-Division Multiple Access (OFDMA) com TTIs (Transmission Time Interval) variáveis [10,12];
  • novos schedulers flexíveis de MAC que consideram simultaneamente recursos de domínio de tempo e frequência (blocos de recursos e símbolos) tanto para esquemas de acesso Time-Division Multiple Access (TDMA) quanto para esquemas de acesso baseados em OFDMA com TTI variável [10,12];
  • tempos de processamento em acordo com o rádio 5G [10,12];
  • novos gerenciadores de Bandwidth Part (BWP) e arquitetura com suporte a múltiplas BWPs [10,12];
  • suporte a frequências mmWave e bandas de 400 MHz [10].

Algumas outras funcionalidades, não específicas do 5G, são:

  • suporte a configuração de potência de transmissão [10];
  • configuração da quantidade de antenas [10];
  • configuração da velocidade dos nós [10];
  • beamforming [10];
  • suporte a vários modelos de propagação [10].

Scapy

Scapy é um poderoso programa interativo de manipulação de pacotes. É capaz de forjar e decodificar pacotes de um grande número de protocolos, enviá-los, capturá-los, casar requisições e respostas, entre outros [5,13]. Uma das funcionalidades mais interessantes do Scapy é a capacidade de criar pacotes customizáveis, especificando as diferentes camadas e protocolos de rede, bem como alterar cada um dos campo dos cabeçalhos destes pacotes [5].

Essa criação e customização é facilitada com o uso da interface por linha de comando e pela sintaxe simples e direta, uma vez que o Scapy é implementado em Python. Outra funcionalidade que auxilia na criação de fluxos de pacotes é a função rdpcap em que é possível ler arquivos de gravação de tráfego (.pcap), arquivos estes que podem ser gerados em capturas de ferramentas como Tcpdump e Wireshark [5].

Outra funcionalidade implementada pela biblioteca Scapy é o método sniff. Esta função é responsável por capturar pacotes e armazená-los em uma estrutura que pode, posteriormente ser manipulada e tratada utilizando Python [5].

No código fonte 1 é possível observar o commando sniff para a captura de cem pacotes, esta quantidade é configurada através do parâmetro count. O comando se utiliza de um filtro que seleciona somente pacotes cujo protocolo da camada de transporte é UDP (User Data Protocol) e cujas portas são 67 ou 68, ambas referentes ao protocolo DHCP (Dynamic Host Configuration Protocol) e vindos do endereços IP de origem 8.8.8.8 através do parâmetro filter [5].

Além disto este comando filtra qual interface de rede desejada para interceptar os pacotes, neste caso eth0, uma interface do tipo Ethernet padrão, presente em sistema operacionais Linux. Por fim, todos estes pacotes interceptados são armazenados em uma variável pacotes para posterior tratamento e manipulação.

Código fonte 1 – Exemplo de utilização do comando sniff da biblioteca Scapy

pacotes = sniff(filter="src 8.8.8.8 udp port 67 or 68", iface="eth0", count=100)

Simuladores

A melhor forma de se avaliar sistemas para entender a influência de cada conjunto de configurações nos índices de desempenho finais é por meio de simulações [10].

Alguns exemplos de simuladores de redes utilizados na academia são o ns-3 e o OMNeT++. Ambos possuem bibliotecas com suporte a simulação de redes móveis e são muito versáteis, possuindo um grande leque de configurações disponíveis. Além disso, oferecem suporte à integração de recursos físicos e interfaces de redes do sistema operacional, permitindo a interação entre diferentes softwares e hardwares, como por exemplo: UE e interface de rádio simulada interagindo com um Core 5G e uma rede de dados real [10].

Também, softwares como o MATLAB são bastante utilizados para simulações de nível de enlace, pois possuem uma vasta biblioteca de funcionalidades para estudos de sistemas de controle, sinais e modulações, permitindo o desenvolvimento de códigos em linguagem própria que facilitam o acesso a tais recursos [10].

O Quadro 1 ilustra uma lista de simuladores de código aberto para sistemas 5G e uma breve descrição de cada um [10].

Quadro 1­ – Simuladores de 5G de código aberto

Simulador Características principais
OpenAirInterface [9] Pode ser utilizado com hardware SDR para testes reais controlando o acesso ou o UE. Possui também um simulador para simular a parte de rádio do 5G, porém não permite configurações avançadas como distância, beamforming, obstáculos, velocidade, entre outros.
NYUSIM [14] Simulador de nível de enlace (link) para modelagem estatística de canal, código de simulação com interface fácil de usar e frequências de portadora de 2 a 73 GHz. Escrito para MATLAB.
Vienna 5G Simulators [15] Simuladores de nível de enlace e de sistema para simulações em grande escala (incluindo centenas de nós) e suporte à paralelização. Escrito para MATLAB.
WiSE [16] Simulador de nível de sistema para orientações multicamadas.
GTEC 5G Simulator [17] Simulador de nível de enlace. Para MATLAB.
5G Toolbox by Matlab [18] Simulador de nível de enlace, focado em modelagem de canal e geração de sinal. Para MATLAB.
Simu5G [19] Simulador de ponta a ponta em nível de sistema baseado em OMNeT++.
5G-air-simulator [20] Simulador em nível de sistema, de ponta a ponta, para modelar a interface de ar (air) 5G.
ns–3 mmWave [11] Simulador em nível de sistema de ponta a ponta com pilha de protocolos completa para simular bandas de ondas milimétricas do rádio 5G (NR). Para ns-3.
5G-LENA [12] Simulador em nível de sistema de ponta a ponta com pilha de protocolos completa para simular bandas de 0,5 até 100 GHz do rádio 5G (NR). Para ns-3.

Fonte: [21]. Traduzido e adaptado por [10]

Referências:

[1] ROTA, Lucas Kienen. Avaliação e validação da interoperabilidade das Redes Non3GPP com as redes 5G fim a fim (UE a UE).  2023. 88 f. TCC (Graduação) – Curso de Engenharia de Controle e Automação, Departamento de Engenharia de Controle, Automação e Computação, Universidade Federal de Santa Catarina. Campus Blumenau, Blumenau, 2023. Disponível em: https://repositorio.ufsc.br/handle/123456789/248729. Acesso em: 13 jul. 2023.

[2] UERANSIM. UERANSIM. Acessado em: 21 de Junho de 2023. 2023. Disponível em: https://github.com/aligungr/UERANSIM.

[3] LIAO, Douglas. Implementação de QoS em rede 5G através do Network Slicing.  2023. 75 f. TCC (Graduação) – Curso de Engenharia de Controle e Automação, Departamento de Engenharia de Controle, Automação e Computação, Universidade Federal de Santa Catarina. Campus Blumenau, Blumenau, 2023. Disponível em: https://repositorio.ufsc.br/handle/123456789/248721. Acesso em: 13 jul. 2023.

[4] FOUNDATION, Open Networking. Aether-in-a-Box for Developers. 2020. Disponível em: https://docs.aetherproject.org/master/developer/aiabhw5g.html. Acesso em: 6 jun. 2023.

[5] SILVA, Gabriel Henrique Davanço. Classificação de tráfego por classes de serviço no núcleo 5G. 2022. 80 f. TCC (Graduação) – Curso de Engenharia de Controle e Automação, Departamento de Engenharia de Controle, Automação e Computação, Universidade Federal de Santa Catarina. Campus Blumenau, Blumenau, 2022. Disponível em: https://repositorio.ufsc.br/handle/123456789/237577. Acesso em: 26 ago. 2022.

[6] NATIONAL CHIAO TUNG UNIVERSITY AND NATIONAL CHUNG CHENG UNIVERSITY. free5GC Link The Word! 2019. Disponível em: . Acesso em: 14 abr. 2022.

[7] BARETTA, José Luis Maziero. Encapsulamento de protocolos Ethernet Industrial utilizando a rede 5G. 2022. 74 f. TCC (Graduação) – Curso de Engenharia de Controle e Automação, Departamento de Engenharia de Controle, Automação e Computação, Universidade Federal de Santa Catarina. Campus Blumenau, Blumenau, 2022. Disponível em: https://repositorio.ufsc.br/handle/123456789/243552. Acesso em: 01 abr. 2023.

[8] MALLASEN QUINTANA, S. Deployment and analysis of a 5G NR radio access network based on Open RAN, using USRPs and OpenAirInterface. [S.l.: s.n.], Acesso em: 7 dez. 2022. Disponível em:http://hdl.handle.net/10251/187834.

[9] KALTENBERGER, F. et al. The OpenAirInterface 5G New Radio Implementation: Current Status and Roadmap. WSA 2019; 23rd International ITG Workshop on Smart Antennas, pp. 1-5, 2019.

[10] MAILER, Christian. Desenvolvimento e análise de um modelo de simulação para arquiteturas 5G industriais. 2022. 86 f. Dissertação (Mestrado) – Curso de Ciência da Computação, Centro Tecnológico, Universidade Federal de Santa Catarina, Florianópolis, 2022. Disponível em: https://repositorio.ufsc.br/handle/123456789/244587. Acesso em: 01 abr. 2023.

[11] MEZZAVILLA, M. et al. End-to-End Simulation of 5G mmWave Networks. IEEE Communications Surveys & Tutorials, vol. 20, no. 3, pp. 2237-2263, Abr. 2018, doi: 10.1109/COMST.2018.2828880.

[12] PATRICIELLO, N. et al. An E2E Simulator for 5G NR Networks. Simulation Modelling Practice and Theory, vol. 96, n. 101933, Nov. 2019, doi: 10.1016/j.simpat.2019.101933.

[13] BIONDI, P. Scapy: Packet Crafting for Python2 and Python3. 2021. Disponível em: . Acesso em: 12 jul. 2022.

[14] SUN, S.; MACCARTNEY, G. R.; RAPPAPORT, T. S. A novel millimeter-wave channel simulator and applications for 5G wireless communications. 2017 IEEE International Conference on Communications (ICC), pp. 1-7, Jul. 2017, doi: 10.1109/ICC.2017.7996792.

[15] MÜLLER, M. et al. Flexible multi-node simulation of cellular mobile communications: the Vienna 5G System Level Simulator. Journal on Wireless Communications and Networking, vol. 2018, n. 227, Set. 2018, doi: 10.1186/s13638-018-1238-7.

[16] JAO, C. -K. et al. WiSE: A System-Level Simulator for 5G Mobile Networks. IEEE Wireless Communications, vol. 25, no. 2, pp. 4-7, Abr. 2018, doi: 10.1109/MWC.2018.8352614.

[17] DOMINGUEZ-BOLANO, T. et al. The GTEC 5G link-level simulator. 1st International Workshop on Link- and System Level Simulations (IWSLS). 2016, pp. 1-6, doi: 10.1109/IWSLS.2016.7801585.

[18] MATHWORKS. 5G Toolbox, 2021. Simulate, analyze and tests 5G communications Systems. Math works. Disponível em: https://www.mathworks.com/products/5g.html. Acesso em: 07 nov. 2022.

[19] NARDINI, G. et al. Simu5G: A System-level Simulator for 5G Networks. Proceedings of the 10th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, pp. 68-80, 2020, doi: 10.5220/0009826400680080.

[20] MARTIRADONNA, S. et al. 5G-Air-simulator: An open-source tool modeling the 5G air interface. Computer Networks, vol. 173, n. 107151, Maio 2020, doi: 10.1016/j.comnet.2020.107151.

[21] KOUTLIA, K. et al. Calibration of the 5G-LENA System Level Simulator in 3GPP reference scenarios. Elsevier Simulation Modelling Practice and Theory (SIMPAT), vol. 119, n. 102580, Maio 2022, doi: 10.1016/j.simpat.2022.102580.

Tags: 5GAethercoreedgeIndustria 4.0IoTNRRANslicingUEUERANSIM

Computação de borda 5G

15/11/2021 09:24

A computação de borda trata de deixar os serviços mais próximos do local onde serão entregues. Os serviços aqui incluem potência de computação e memória necessária para, por exemplo, rodar uma requisição de um aplicativo. A computação de borda, portanto, visa trazer os aplicativos, dados e poder de computação (serviços) que se encontram longe em pontos centralizados (central de dados) para locais mais próximos do usuário (como centrais de dados distribuídas). O objetivo é atingir uma latência mais baixa e reduzir os custos de transmissão e tráfego no Core da rede. Aplicativos que usam grandes volumes de dados e/ou requerem tempos de resposta curtos, por exemplo, jogos de realidade virtual em tempo real, inspeção de qualidade por vídeo na indústria 4.0, carros autônomos, cidades inteligentes etc., são alguns dos candidatos que podem se beneficiar da computação de borda [1].

A 3GPP não especifica nenhuma solução ou arquitetura especial para computação de borda, em vez disso, a 3GPP define várias ferramentas gerais que podem ser usadas para fornecer um eficiente caminho para o usuário. Essas ferramentas não são específicas para computação de borda, mas podem ser usadas como facilitadores na sua implantação [2].

Seleção da UPF pela SMF

A SMF é responsável pela seleção da UPF. Os detalhes de como isso é feito não são padronizados e dependem de vários aspectos, por exemplo, aspectos de implantação relacionados à topologia de rede das UPFs implantadas, bem como, os requisitos do serviço que será entregue.

Quando a SMF faz a seleção de uma UPF, um pré-requisito é que a própria SMF esteja ciente de quais UPFs estão disponíveis em suas respectivas configurações, como recursos da UPF, sequência de carregamento no caso de mais de uma UPF, etc. Uma das formas é que a SMF pode ser configurada com as UPFs disponíveis. Essa configuração pode incluir informações relacionadas à topologia para que a SMF esteja ciente sobre a localização da UPF e de que forma as UPFs estão conectados. Isso permite que a SMF selecione UPFs adequadas, por exemplo, dependendo da localização do UE.

Uma vez que a SMF sabe sobre a(s) UPF(s) disponíveis e há uma necessidade da SMF selecionar uma ou mais UPFs para uma sessão de PDU, como exemplo, no estabelecimento de sessão de PDU ou em algum evento de mobilidade, a SMF pode levar diferentes informações em consideração para selecionar uma UPF. Os detalhes não são padronizados, mas deixados para implementação e configuração do operador [1]. Algumas dessas informações são recebidas da UPF, outras são recebidas da AMF, enquanto que algumas podem ser pré-configuradas na SMF, como as informações relacionadas à topologia do plano do usuário e terminações do plano do usuário.

2 Formas de classificação de tráfego para a DN

Uma sessão de PDU tem no caso mais simples uma única sessão PDU âncora (PSA PDU Session Anchor) denominada de PSA UPF e, portanto, uma única interface N6 para a DN [1]. Mas uma sessão de PDU também pode ter mais do que uma PSA UPF e, portanto, várias interfaces N6 para uma DN conforme a Figura 1.

        1. PSA UPF: Esta é a UPF que faz a conexão com a DN através da interface N6.

        2. UPF intermediária (I-UPF): Esta é a UPF que é inserida no caminho do plano do usuário entre a AN e a PSA UPF. Ela encaminha o tráfego entre a AN e o PSA UPF.

        3. UPF com classificador de Up-Link (UL-CL) ou ponto de ramificação (BP): Esta é uma UPF que está “bifurcando” o tráfego para uma sessão de PDU na conexão ascendente e “mesclando” caminhos Up-Link descendente, fazendo funções relacionadas a QoS.

Figura 1 – Configurações de UPF. A: PSA único. B: PSA + I-UPF. C: UL-CL + 2 PSAs [1].

Essa última opção apresentada na Figura 1 pode ser usada para rotear seletivamente o tráfego do plano do usuário para diferentes interfaces N6, por exemplo, rotear de uma PSA UPF com interface N6 para um site periférico local e outra PSA UPF com interface N6 para um data center Remoto [1]. Essa funcionalidade é de suma importância para este trabalho, pois pode ser usada em aplicações da computação de borda 5G.

3 Classificação de Up-Link

Classificação de Up-Link é uma funcionalidade que é suportada por uma UPF onde a UPF desvia parte do tráfego para uma PSA UPF diferente (local) conforme é apresentado na Figura 2. O UL CL fornece encaminhamento de tráfego de ligação ascendente para diferentes Âncoras de Sessão PDU e desvia o tráfego de ligação descendente para o UE, isto é, o desvio do tráfego de diferentes Âncoras de Sessão PDU na ligação para o UE. O UL CL desvia o tráfego com base nas regras de detecção e encaminhamento de tráfego, fazendo uso de filtros de tráfego fornecidos pela SMF. Assim, o UL CL aplica as regras de filtragem, por exemplo, para examinar o endereço IP de destino dos pacotes IP da conexão ascendente enviados pelo UE e determina como o pacote deve ser encaminhado. A UPF que suporta um UL CL também pode ser controlada pela SMF para oferecer suporte à medição de tráfego e aplicar cobranças. O uso do UL CL se aplica a Sessões de PDU do tipo IPv4 ou IPv6 ou IPv4v6 ou Ethernet, de modo que a SMF possa fornecer filtros de tráfego [1].

Figura 2 – Acesso local a DN usando o UL CL [1].

Quando a SMF decide desviar o tráfego, ela insere um UL CL no caminho de dados e uma PSA adicional. Isso pode ser feito a qualquer momento durante a vida útil de uma sessão de PDU. A PSA adicional pode ser colocada na mesma UPF que o UL CL ou pode ser uma UPF autônoma. Quando a SMF determina que o UL CL não é mais necessário, ele pode ser removido do caminho de dados pela SMF [1].

O UE desconhece o desvio de tráfego por parte do UL CL e não participa na inserção e na remoção do UL CL. A solução com o UL CL, portanto, não requer nenhuma funcionalidade específica do UE.

Atenção: O texto acima foi extraído do TCC de Dener Kraus, intitulado Computação de borda para indústria utilizando a rede 5G, disponível em: https://repositorio.ufsc.br/handle/123456789/228613.

Referências:

[1] ROMMER, S. et al. 5G Core Networks: Powering Digitalization. [S.l.]: Academic Press, 2019.

[2] 3GPP. Universal Mobile Telecommunications System (UMTS); LTE; General UMTS Architecture (3GPP TS 23.101 version 8.0.0 Release 8). Acesso em: 26/08/2021. Disponível em:<https://www.etsi.org/deliver/etsi_ts/123100_ 123199/123101/08.00.00_60/ts_123101v080000p.pdf>.

Tags: 5GbordacoreedgeSMFUL-CLup-linkUPF

Patentes e mercado da computação de borda 5G

15/11/2021 08:57

Na Tabela 1 é apresentado as principais empresas no depósito de patentes, declaração de patentes essenciais a padrões (SEP – Standard-Essential Patent) e desenvolvimento de padrões relacionados com computação de borda 5G. Essas empresas são do ramo de computação em nuvem ou de setores de dados e software.

Cessionário atual/

Desenvolvedor de padrões

Pedidos de

patente

Declaração

SEP

Contribuições

de padrões

1

Huawei (CN)

821

138

862

2

Intel (US)

686

42

488

3

Nokia (FN)

576

87

439

4

SAS Institute (US)

426

0

0

5

Apple (US)

386

72

41

6

Samsung Electronics (KR)

287

16

536

7

Verizon (US)

196

0

50

8

Microsoft (US)

188

0

0

9

Cisco (US)

168

0

39

10

Ericsson (SE)

163

6

374

11

LG Electronics (KR)

160

33

144

12

NEC (JP)

158

3

55

13

Pure Storage (US)

155

0

0

14

IBM (US)

125

0

0

15

Siemens (DE)

120

0

30

16

Sony (JP)

119

0

66

17

AT&T (US)

99

0

130

18

TE (CN)

96

4

193

19

Qualcomm (US)

68

6

256

20

Tencent (CN)

64

0

117

21

Convida Wireless (US)

60

0

88

22

CATT Datang Mobile (CN)

55

2

0

23

China Mobile (CN)

54

0

206

24

Deutsche Telekom (DE)

47

0

64

25

InterDigital (US)

46

2

77

26

SoftBank (JP)

46

0

4

27

Orange (FR)

41

0

60

28

Hewlett Packard Enterprise (US)

39

0

19

29

ETRI (KR)

37

1

29

30

Fraunhofer (DE)

35

11

17

31

Robert Bosch (DE)

34

0

10

32

Sharp (JP)

30

2

0

Tabela 1 – Relação empresas/desenvolvedores e número de patentes que descrevem tecnologias de computação de borda [1].

Fabricantes de chips, celulares e redes como Huawei (China), Intel (EUA), Nokia (Finlândia), Apple (EUA), Samsung Electronics (Coréia) e Ericsson (Suécia) contribuem fortemente para o desenvolvimento de padrões e, ao mesmo tempo, possuem grandes carteiras de patentes, algumas das quais são declaradas essenciais como padrão, isto é, uma patente que se torna um padrão que outros desenvolvedores ou empresas devem seguir. Além disso, muitas das operadoras de telecomunicações podem ser encontradas na lista dos principais proprietários de patentes e desenvolvedores de padrões, como Verizon (EUA), AT&T (EUA), China Mobile (China), Deutsche Telekom (Alemanha) e Orange (França).

Os líderes de tecnologia listados na Tabela 1 são de extrema importância para o sucesso da computação de borda, pois têm desenvolvido dispositivos, chips, redes, aplicativos, serviços, sensores e padrões de conectividade para realizar os primeiros casos de uso da computação de borda. Prevê-se que o mercado global da computação de borda em nuvem crescerá para US$12 bilhões ainda em 2021 [1]. Supõe-se que, até 2023, cerca de 70% das empresas estarão realizando parte de seus processamentos de dados usando a computação de borda 5G [1]. Assim, o interesse por uma parcela desse mercado é propagado entre várias empresas do ramo de desenvolvimento de tecnologia.

Uma dessas empressas interessada na computação de borda 5G é a WEG que tem criado parcerias com empresas da Tabela 1, como: Nokia e Qualcomm, além da já existente cooperação com a Agência Brasileira de Desenvolvimento Industrial (ABDI), a Agência Nacional de Telecomunicações (Anatel) e a Claro. O Open Lab 5G – V2COM da WEG em uma das fábricas, localizada na cidade de Jaraguá do Sul no estado de Santa Catarina (BR) completou testes práticos de conectividade à rede 5G. Foram realizados testes para avaliação de desempenho e a convivência de dispositivos e antenas com a tecnologia 5G em ambiente real para reunir informações sobre faixas de frequência, latência, potência e outras características necessárias às aplicações industriais [2].

De acordo com o relatório de resultados preliminares do Open Lab 5G – V2COM [3], foram obtidos dados experimentais utilizando a ferramenta iPerf [4], com transmissão de dados tanto TCP como em UDP ativando tráfego em cinco premissas de equipamentos de usuário (CPEs – Customer-premises equipment) parados e a uma distância de aproximadamente cinco metros de uma Small Cell: rede privada independente da Nokia na banda n78 (3,5 GHz), faixa de 3,7 GHz a 3,8 GHz, operando com largura de canal de 100 MHz, no modo SA (Stand Alone) e TDD (Time-Division Duplex) com distribuição 3:7 e saída de potência (Effective Isotropic Radiated Power – E.I.R.P.) de 23 dBm.

Um dos testes do relatório de resultados preliminares do Open Lab 5G – V2COM [3] é o de Throughput, latência e perda de pacotes versus a distância entre a Small Cell e um dos CPEs. Tais testes foram realizados posicionando fisicamente os CPEs a diferentes distâncias da Small Cell 4 da rede privativa independente – SA representada na Figura3, ou seja, apenas uma Small Cell ligada e as outras três desligadas.

Figura 1 – Topologia do teste da rede privativa independente – SA [3].

Foramrealizados testes utilizando-se a ferramenta iPerf com transmissão de dados em TCP para esta topologia em específico. As verificações foram feitas com o CPE parado às distâncias de 5, 20, 40 e 60 metros da Small Cell. Os valores de Throughput máximo, médio e mínimo obtidos durante o tempo de um minuto de medição são apresentados na Figura 2 e Figura 3. Também são apresentados nas mesmas figuras, os valores de latência médios obtidos durante quinze segundos antes do início do envio dos pacotes de dados, durante o um minuto em que são enviados os pacotes de dados e durante quinze segundos depois do envio dos pacotes de dados. Todas essas medições são apresentadas para cada uma das quatro distâncias em um mesmo gráfico para melhor visualização e comparação. São apresentados também, para as diferentes distâncias, os percentuais de redução de Throughput obtidos com relação ao Throughput a 5 metros.

Figura 2 – Uplink – Latência vs Throughput máximo (TCP) [3].

Figura 3 – Downlink – Latência vs Throughput máximo (TCP) [3].

Atenção: O texto acima foi extraído do TCC de Dener Kraus, intitulado Computação de borda para indústria utilizando a rede 5G, disponível em: https://repositorio.ufsc.br/handle/123456789/228613.

Referências:

[1] Pohlmann, T. Who is leading the 5G patent race for edge computing? Acesso em: 26/08/2021. Disponível em:<https://www.managingip.com/article/ b1rznbcc4dsk23/who-is-leading-the-5g-patent-race-for-edge-computing>.

[2] WEG. WEG completa testes práticos de conectividade à rede 5G. Acesso em: 26/08/2021. Disponível em:<https://www.weg.net/institutional/BR/pt/news/ produtos-e-solucoes/weg-completa-testes-praticos-de-conectividade-a-rede-5g>.

[3] WEG-V2COM OPEN LAB. RESULTADOS PRELIMINARES WEG-V2COM OPEN LAB 5G. Acesso em: 04/09/2021. Disponível em:<https://sei.anatel.gov.br/sei/modulos/pesquisa/md_pesq_documento_consulta_externa. php?eEP-wqk1skrd8hSlk5Z3rN4EVg9uLJqrLYJw_9INcO6fX6o9bVPoiTHX_ HKDp8z4jNp1Hsw31wuTQX8J-fqjddyWo1pe5dZRrEvwZXjQvETUCBSxxyrrpuXwu\ EBod27a>.

[4] iPerf. iPerf – The ultimate speed test tool for TCP, UDP and SCTP. Acesso em: 07/09/2021. Disponível em:<https://iperf.fr/>.

Tags: 5GABDIANATELAppleAT&TbordaChina MobilecoreDeutsche TelekomedgeEricssonHuaweilatenciaNokiaOrangeSamsungthroughputV2COMvelocidadeVerizonWEG

Introdução ao 5G Core

24/04/2021 14:37

O Core é a estrutura responsável por gerenciar os recursos de rede e as conexões dos usuários, como autenticação, QoS, segurança, roteamento, encaminhamento de pacotes, mobilidade, interceptação legal e outros. Juntamente com a interface de acesso via rádio, Radio Access Network (RAN), compõe a rede móvel de telecomunicações.

No 5G, o Core foi concebido tendo-se como foco uma arquitetura baseada em serviços, ou seja, uma estrutura flexível em que suas funcionalidades são divididas em nós ligados a um barramento comum que interagem entre si de forma independente. Essa abordagem permite a utilização de recursos em nuvem, de orquestração e de edge computing para escalonar a rede e adaptá-la continuamente a variações na carga de processamento, atingindo-se, assim, maior eficiência e estabilidade.

Para comunicação entre os nodos, chamados de Network Functions (NFs), a 3GPP definiu uma API (Application Programming Interface) que funciona sobre o protocolo HTTP (Hypertext Transfer Protocol) e que segue o modelo REST (Representational State Transfer). O modelo REST, proposto em 2000, conta com amplo suporte nas linguagens de programação e é muito empregado na Web, onde muitas empresas disponibilizam uma API em REST para interação com seus produtos.

As funções de rede essenciais do Core 5G (mostradas na Figura 1) são: AMF, UDM (Unified Data Management), AUSF (Authentication Server Function), UDR (Unified Data Repository), SMF (Session Management Function), NRF (Network Repository Function) e UPF. São elas que gerenciam a autenticação, estabelecimento de sessão, roteamento, interface com a rede de rádio, interface com o equipamento do usuário (UE), mobilidade, estabelecimento de túnel com a rede de dados ou Data Network (DN), entre outras funcionalidades. No entanto, há ainda funções de rede adicionais que estendem as capacidades do Core (mostradas na Figura 2), como a PCF (Policy Control Function), NSSF (Network Slice Selection Function), N3IWF (Non-3GPP Inter Working Function), AF (Application Function), NEF (Network Exposure Function), SMSF (Short Message Service Function), LMF (Location Management Function) e outras.

Figura 1 – Elementos essenciais de uma rede 5G [2].


Figura 2 – Funções de rede de um Core 5G [2].

O conjunto de protocolos NAS (Non Access Stratum), composto por 5GMM (5GS Mobility Management) e 5GSM (5GS Session Management), intermedia a conexão entre o UE e o Core. Para as mensagens de controle entre UE e AMF, destinadas ao gerenciamento do registro de dispositivos, mobilidade e segurança, o protocolo 5GMM é utilizado, enquanto que para as mensagens entre UE e SMF, como as destinadas ao gerenciamento das sessões PDUs (Protocol Data Unit), utiliza-se o protocolo 5GSM.

As próximas subseções descrevem as principais função de rede do Core 5G.

AMF

O AMF (Access and Mobility Management Function) é responsável por estabelecer a conexão com a RAN, através da interface N2, e com o UE, através da interface N1. O AMF gerencia o registro, autenticação e mobilidade do UE, além de gerenciar a encriptação e integridade das mensagens NAS. Também, retransmite as mensagens de gerenciamento de sessão, Session Management (SM), entre UE e SMF, as mensagens SMS (Short Message Service) entre UE e SMSF, as mensagens dos serviços de localização entre UE e LMF e entre RAN e LMF e as mensagens de política entre UE e PCF. Por fim, conta ainda com suporte para entrega de mensagens de aviso públicas, Public Warning System (PWS), e interface para interceptação legal, Lawful Interceptation (LI). Ressalta-se que um determinado UE só poderá ser servido por um AMF em um instante de tempo. A Figura 3 ilustra as interfaces utilizadas pelo AMF para interação com as demais funções de rede.


Figura 3 – Interfaces de rede utilizadas pelo AMF [2].

SMF

O SMF (Session Management Function) estabelece e gerencia a conexão entre o UE e a rede de dados (DN). Para isso, ele seleciona o UPF de acordo com os requisitos da conexão e estabelece uma sessão PDU (Protocol Data Unit) entre o acesso e o UPF ou entre UPFs quando necessário. A interface de comunicação entre SMF e UPF é chamada de N4. O protocolo PFCP (Packet Forwarding Control Protocol), desenvolvido para o 4G e evoluído para o 5G, é utilizado na camada de aplicação da interface N4 e atua em cima do protocolo UDP. O estabelecimento da sessão PDU, bem como de suas características, depende dos requisitos do UE, das informações dos bancos de dados do UDM/UDR e das políticas de serviço e QoS configuradas no PCF. O SMF também pode alocar endereços IPs para as sessões PDUs e possui suporte para interface de interceptação legal (LI). A Figura 4 ilustra as interfaces utilizadas pelo SMF para interação com as demais funções de rede.

Figura 4 – Interfaces de rede utilizadas pelo SMF [3].

UPF

O UPF (User Plane Function) é a função de rede que gerencia o tráfego do usuário. Suas interfaces de rede estão expostas na Figura 5. Ele é escolhido e controlado pelo SMF, no que tange as políticas de serviço, e serve como ponte entre a rede de dados (DN) e o UE, roteando, processando e direcionando os pacotes de acordo com as regras do SMF. Desse modo, atua como ponto de ancoragem para a sessão PDU, abstraindo os eventos de mobilidade na rede e armazenando os pacotes que não podem ser entregues ao UE em um buffer para posterior encaminhamento. Pode ser disposto de forma geograficamente centralizada ou distribuída, não havendo restrições no número de UPFs servindo uma sessão PDU, conforme especificações da 3GPP. Além disso, podem ser implementados em série, encaminhando-se o tráfego com base em regras de roteamento.

O UPF é responsável, também, por coletar dados estatísticos de tráfego, gerar relatórios, aplicar QoS de acordo com a demanda da rede e replicar o tráfego para monitoramento legal.

Há uma funcionalidade no UPF chamada de Up Link Classifier (UL CL) que permite direcionar o tráfego para diferentes UPFs baseado em regras de encaminhamento fornecidas pelo SMF. O UL CL gerencia o envio dos pacotes do UE para as diferentes redes e das redes de volta para o UE, podendo ser adicionado ou removido a qualquer momento pelo SMF. A Figura 6 ilustra o funcionamento do UL CL.

Figura 5 – Interfaces de rede utilizadas pelo UPF [3].


Figura 6 – Direcionamento de tráfego através de UL CL [2].

NRF

O NRF (Network Repository Function) serve como repositório das funções de rede (NFs) disponíveis para o Core. Ele armazena as características que descrevem cada NF registrado e permite que outras NFs consultem seu banco de dados para obter o endereço, na rede, dos serviços desejados. A grande vantagem trazida pelo NRF é a não exigência de conhecimento prévio dos endereços e perfis dos elementos do Core que compõem a rede, podendo ser requisitados no momento em que uma determinada NF necessitar de um serviço de outra NF. Cada NF, ou entidade representando a NF, é responsável por registrar-se no NRF e atualizar seu status, porém, o NRF dispõe de um mecanismo keep alive que identifica elementos que não estão mais disponíveis. Mudanças na estrutura do Core ou de escalabilidade são simplesmente efetuadas através de atualizações do status da NF alterada no NRF, sem necessidade de alterar-se as configurações internas das outras NFs. Dentre as informações de perfis disponíveis no NRF, pode-se citar: tipo da NF, ID (identificação), endereço, capacidade, serviços suportados e informações de autorização.

UDM

O UDM (Unified Data Management) acessa e gerencia os dados de inscrições armazenados no UDR, envia dados relevantes para as NFs que servem o UE, como AMF e SMF, autoriza acessos e serviços, autentica usuários, gerencia identificação de usuários e oferece suporte a serviços SMS. De forma geral, o UDM fornece uma interface de acesso aos bancos de dados com informações da rede, permitindo que um usuário utilize múltiplos UDMs para transações diferentes.

UDR

O UDR (Unified Data Repository) armazena e fornece acesso de dados de inscrições para o UDM, dados de políticas para o PCF e dados estruturados para exposição para o NEF.

AUSF

O AUSF (Authentication Server Function) realiza a autenticação primária e o estabelecimento de chaves entre o UE e a rede, utilizando para isso informações do UDM. Suas interfaces com o AMF e o UDM podem ser visualizadas na Figura 7.

Figura 7 – Interfaces de rede utilizadas pelo AUSF [3].

PCF

O PCF (Policy Control Function) é responsável por armazenar e prover as políticas de serviço para as NFs. Para o SMF, as políticas fornecidas são os níveis de QoS e regras de tráfego e cobrança, as relacionadas ao estabelecimento da sessão PDU e as relacionadas ao tráfego local que podem influenciar a escolha do UPF por parte do SMF. Para o AMF, o PCF fornece as regras de acesso e mobilidade, como restrições de áreas de serviço e prioridades de acesso. Para o UE, o PCF fornece, através do AMF, políticas relacionadas ao acesso não 3GPP, políticas de escolha de fatias na rede (slicing), de escolha de redes de dados (DN), entre outras. As interfaces de rede do PCF estão expostas na Figura 8.

As políticas são determinadas considerando-se fatores como condição da rede, políticas da operadora local, requisitos de aplicativo e dados de assinatura do usuário.

Figura 8 – Interfaces de rede utilizadas pelo PCF [3].

NSSF

O NSSF (Network Slice Selection Function) é o elemento que seleciona as fatias de rede para serem utilizadas pelo UE. Tal procedimento é realizado com base no parâmetro de Single Network Slice Selection Assistance Information (S-NSSAI), que define a fatia desejada. Também, o NSSF lista os AMFs que podem servir o UE, podendo consultar o NRF para isso.

N3IWF

O N3IWF (Non-3GPP Inter Working Function) permite a integração de redes que não são parte do acesso definido pela 3GPP, como WiFi, ao Core 5G. Essa interconexão é feita através do estabelecimento de túneis IKEv2 (Internet Key Exchange) e IPsec (IP Security Protocol) entre N3IWF e UE. A Figura 9 ilustra a utilização do N3IWF para conectar uma rede não 3GPP ao Core 5G.

Figura 9 – N3IWF conectando uma rede não 3GPP ao Core 5G [2].

NWDAF

A função NWDAF (Network Data Analysis Function) é responsável por coletar dados de outras funções de rede por meio de serviços que expõem eventos dessas funções [4]. Ela também coleta dados de sistemas, operações e gerenciamento e do repositório unificado de dados (UDR). Qualquer outra função de rede ou até mesmo aplicativos externos podem teoricamente consumir os serviços oferecidos pela NWDAF [4,5]. Os principais consumidores da NWDAF são a NSSF e a PCF. Ao coletar dados, a NWDAF pode realizar análises, como resumos históricos ou estatísticos, ou previsões de valores futuros [4]. As análises realizadas pela NWDAF podem ser usadas por outras funções de rede para realizar ações específicas na rede, como modificar uma fatia específica ou modificar a qualidade de serviço (QoS) de um serviço [2,4].

Atenção: O texto acima foi extraído do TCC de Christian Mailer, intitulado Plataforma de CORE 5G em nuvem para disponibilização de funções de rede como serviço, disponível em: https://repositorio.ufsc.br/handle/123456789/209624.

Referências:

[1] MAILER, Christian. Plataforma de CORE 5G em nuvem para disponibilização de funções de rede como serviço. 2020. 54 f. TCC (Graduação) – Curso de Engenharia de Controle e Automação, Departamento de Engenharia de Controle, Automação e Computação, Universidade Federal de Santa Catarina. Campus Blumenau, Blumenau, 2020. Disponível em: https://repositorio.ufsc.br/handle/123456789/209624. Acesso em: 15 abr. 2021.

[2] ROMMER, S. et al. 5G Core Networks: Powering Digitalization. [S.l.]: Academic Press, 2019.

[3] PENTTINEN, J. 5G Explained: Security and Deployment of Advanced Mobile Communications. 1. ed. Hoboken, NJ, EUA: Wiley, 2019.

[4] ROTA, Lucas Kienen. Avaliação e validação da interoperabilidade das Redes Non3GPP com as redes 5G fim a fim (UE a UE).  2023. 88 f. TCC (Graduação) – Curso de Engenharia de Controle e Automação, Departamento de Engenharia de Controle, Automação e Computação, Universidade Federal de Santa Catarina. Campus Blumenau, Blumenau, 2023. Disponível em: https://repositorio.ufsc.br/handle/123456789/248729. Acesso em: 13 jul. 2023.

[5] SILVA, Gabriel Henrique Davanço. Classificação de tráfego por classes de serviço no núcleo 5G. 2022. 80 f. TCC (Graduação) – Curso de Engenharia de Controle e Automação, Departamento de Engenharia de Controle, Automação e Computação, Universidade Federal de Santa Catarina. Campus Blumenau, Blumenau, 2022. Disponível em: https://repositorio.ufsc.br/handle/123456789/237577. Acesso em: 26 ago. 2022.

Tags: 5GcoreedgeSDNslicingSMFUEUPF